Approximate Message Passing with Universal Denoising
نویسندگان
چکیده
We study compressed sensing (CS) signal reconstruction problems where an input signal is measured via matrix multiplication under additive white Gaussian noise. Our signals are assumed to be stationary and ergodic, but the input statistics are unknown; the goal is to provide reconstruction algorithms that are universal to the input statistics. We present a novel algorithmic framework that combines: (i) the approximate message passing (AMP) CS reconstruction framework, which solves the matrix channel recovery problem by iterative scalar channel denoising; (ii) a universal denoising scheme based on context quantization, which partitions the stationary ergodic signal denoising into independent and identically distributed (i.i.d.) subsequence denoising; and (iii) a density estimation approach that approximates the probability distribution of an i.i.d. sequence by fitting a Gaussian mixture (GM) model. In addition to the algorithmic framework, we provide three contributions: (i) numerical results showing that state evolution holds for non-separable Bayesian sliding-window denoisers; (ii) an i.i.d. denoiser based on a modified GM learning algorithm; and (iii) a universal denoiser that does not require the input signal to be bounded. We provide two implementations of our universal CS recovery algorithm with one being faster and the other being more accurate. The two implementations compare favorably with existing reconstruction algorithms in terms of both reconstruction quality and runtime.
منابع مشابه
Compressed Sensing via Universal Denoising and Approximate Message Passing
We study compressed sensing (CS) signal reconstruction problems where an input signal is measured via matrix multiplication under additive white Gaussian noise. Our signals are assumed to be stationary and ergodic, but the input statistics are unknown; the goal is to provide reconstruction algorithms that are universal to the input statistics. We present a novel algorithm that combines: (i) the...
متن کاملDenoising Message Passing for X-ray Computed Tomography Reconstruction
X-ray Computed Tomography (CT) reconstruction from sparse number of views is becoming a powerful way to reduce either the radiation dose or the acquisition time in CT systems but still requires a huge computational time. This paper introduces an approximate Bayesian inference framework for CT reconstruction based on a family of denoising approximate message passing (DCT-AMP) algorithms able to ...
متن کاملAsymptotic Analysis of LASSOs Solution Path with Implications for Approximate Message Passing
This paper concerns the performance of the LASSO (also knows as basis pursuit denoising) for recovering sparse signals from undersampled, randomized, noisy measurements. We consider the recovery of the signal xo ∈ R from n random and noisy linear observations y = Axo + w, where A is the measurement matrix and w is the noise. The LASSO estimate is given by the solution to the optimization proble...
متن کاملEmpirical Bayes and Full Bayes for Signal Estimation
We consider signals that follow a parametric distribution where the parameter values are unknown. To estimate such signals from noisy measurements in scalar channels, we study the empirical performance of an empirical Bayes (EB) approach and a full Bayes (FB) approach. We then apply EB and FB to solve compressed sensing (CS) signal estimation problems by successively denoising a scalar Gaussian...
متن کاملGraphical Models Concepts in Compressed Sensing
This paper surveys recent work in applying ideas from graphical models and message passing algorithms to solve large scale regularized regression problems. In particular, the focus is on compressed sensing reconstruction via l1 penalized least-squares (known as LASSO or BPDN). We discuss how to derive fast approximate message passing algorithms to solve this problem. Surprisingly, the analysis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1506.02693 شماره
صفحات -
تاریخ انتشار 2015